Enhanced sensing performance of supported graphitic carbon nitride nanosheets and the fabrication of electrochemiluminescent biosensors for IgG.

نویسندگان

  • Xiaojian Li
  • Hongmin Ma
  • Yong Zhang
  • Dan Wu
  • Xiaohui Lv
  • Bin Du
  • Qin Wei
چکیده

The key challenge for fabricating electrogenerated chemiluminescence (ECL) biosensors still lies in the improvement of the sensing performance of ECL luminophores. Graphite-like carbon nitride (g-C3N4) nanosheets were prepared and the cathodic ECL performance was investigated. The ECL emission of g-C3N4 nanosheets was greatly enhanced and higher sensing sensitivity towards copper ions was achieved by a "space effect", the incorporation of g-C3N4 nanosheets into a top-down prepared nanoporous matrix. Label-free ECL immunosensors were fabricated based on this simple sensing platform. The unique signal amplification strategy and simple fabrication procedure guarantee the sensor stability and production reproducibility. Nanoporous matrix supported ECL probes have potential as a versatile sensing strategy for the fabrication of ECL biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

Excellent graphitic carbon nitride nanosheets-based photoelectrochemical platform motivated by Schottky barrier and LSPR effect and its sensing application.

A visible light responsive photocatalytic hybrid with excellent photoelectrochemical activity was first fabricated via the self-assembly of Au nanorods onto poly(l-cysteine) modified graphitic carbon nitride nanosheets. Herein, layered structural graphitic carbon nitride nanosheets with a proper band gap, high stability, and nontoxicity, as a photoactive material, demonstrate a high photocataly...

متن کامل

Synthesis of spirooxindole derivatives catalyzed by Fe (III)@graphitic carbon nitride nanocomposite via one-pot multi-component reaction

Fe (III) supported graphitic carbon nitride nanocomposite was synthesized by impregnation of FeCl3 with g- C3N4 (Fe (III)@g-C3N4). Then, the synthesis of spirooxindole derivatives was carried out in the presence of Fe (III) @ graphitic carbon nitride nanocompositevia the multi-component reaction of malononitrile, isatins, and 1,3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 24  شماره 

صفحات  -

تاریخ انتشار 2015